239 research outputs found

    Practical large-scale spatio-temporal modeling of particulate matter concentrations

    Get PDF
    The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988--2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10PM_{10} for the full time period and PM2.5PM_{2.5} for a subset of the period. For the earlier part of the period, 1988--1998, few PM2.5PM_{2.5} monitors were operating, so we develop a simple extension to the model that represents PM2.5PM_{2.5} conditionally on PM10PM_{10} model predictions. In the epidemiological analysis, model predictions of PM10PM_{10} are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space--time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS204 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The REFANI-N study protocol: a cluster-randomised controlled trial of the effectiveness and cost-effectiveness of early initiation and longer duration of emergency/seasonal unconditional cash transfers for the prevention of acute malnutrition among children, 6-59 months, in Tahoua, Niger.

    Get PDF
    BACKGROUND: The global burden of acute malnutrition among children remains high, and prevalence rates are highest in humanitarian contexts such as Niger. Unconditional cash transfers are increasingly used to prevent acute malnutrition in emergencies but lack a strong evidence base. In Niger, non-governmental organisations give unconditional cash transfers to the poorest households from June to September; the 'hunger gap'. However, rising admissions to feeding programmes from March/April suggest the intervention may be late. METHODS/DESIGN: This cluster-randomised controlled trial will compare two types of unconditional cash transfer for 'very poor' households in 'vulnerable' villages defined and identified by the implementing organisation. 3,500 children (6-59 months) and 2,500 women (15-49 years) will be recruited exhaustively from households targeted for cash and from a random sample of non-recipient households in 40 villages in Tahoua district. Clusters of villages with a common cash distribution point will be assigned to either a control group which will receive the standard intervention (n = 10), or a modified intervention group (n = 10). The standard intervention is 32,500 FCFA/month for 4 months, June to September, given cash-in-hand to female representatives of 'very poor' households. The modified intervention is 21,500 FCFA/month for 5 months, April, May, July, August, September, and 22,500 FCFA in June, providing the same total amount. In both arms the recipient women attend an education session, women and children are screened and referred for acute malnutrition treatment, and the households receive nutrition supplements for children 6-23 months and pregnant and lactating women. The trial will evaluate whether the modified unconditional cash transfer leads to a reduction in acute malnutrition among children 6-59 months old compared to the standard intervention. The sample size provides power to detect a 5 percentage point difference in prevalence of acute malnutrition between trial arms. Quantitative and qualitative process evaluation data will be prospectively collected and programme costs will be collected and cost-effectiveness ratios calculated. DISCUSSION: This randomised study design with a concurrent process evaluation will provide evidence on the effectiveness and cost-effectiveness of earlier initiation of seasonal unconditional cash transfer for the prevention of acute malnutrition, which will be generalisable to similar humanitarian situations. TRIAL REGISTRATION: ISRCTN25360839 , registered March 19, 2015

    Accelerometer and GPS Data to Analyze Built Environments and Physical Activity

    Get PDF
    Purpose: Most built environment studies have quantified characteristics of the areas around participants' homes. However, the environmental exposures for physical activity (PA) are spatially dynamic rather than static. Thus, merged accelerometer and global positioning system (GPS) data were utilized to estimate associations between the built environment and PA among adults. Methods: Participants (N = 142) were recruited on trails in Massachusetts and wore an accelerometer and GPS unit for 1-4 days. Two binary outcomes were created: moderate-to-vigorous PA (MVPA vs. light PA-to-sedentary); and light-to-vigorous PA (LVPA vs. sedentary). Five built environment variables were created within 50-meter buffers around GPS points: population density, street density, land use mix (LUM), greenness, and walkability index. Generalized linear mixed models were fit to examine associations between environmental variables and both outcomes, adjusting for demographic covariates. Results: Overall, in the fully adjusted models, greenness was positively associated with MVPA and LVPA (odds ratios [ORs] = 1.15, 95% confidence interval [CI] = 1.03, 1.30 and 1.25, 95% CI = 1.12, 1.41, respectively). In contrast, street density and LUM were negatively associated with MVPA (ORs = 0.69, 95% CI = 0.67, 0.71 and 0.87, 95% CI = 0.78, 0.97, respectively) and LVPA (ORs = 0.79, 95% CI = 0.77, 0.81 and 0.81, 95% CI = 0.74, 0.90, respectively). Negative associations of population density and walkability with both outcomes reached statistical significance, yet the effect sizes were small. Conclusions: Concurrent monitoring of activity with accelerometers and GPS units allowed us to investigate relationships between objectively measured built environment around GPS points and minute-by-minute PA. Negative relationships between street density and LUM and PA contrast evidence from most built environment studies in adults. However, direct comparisons should be made with caution since most previous studies have focused on spatially fixed buffers around home locations, rather than the precise locations where PA occurs

    Applying synthetic radiography to intraoral tomosynthesis: A step towards achieving 3D imaging in the dental clinic

    Get PDF
    objectives: A practical approach to three-dimensional (3D) intraoral imaging would have many potential applications in clinical dentistry. Stationary intraoral tomosynthesis (sIOT) is an experimental 3D imaging technology that holds promise. The purpose of this study was to explore synthetic radiography as a tool to improve the clinical utility of the images generated by an sIOT scan. Methods: Extracted tooth specimens containing either caries adjacent to restorations (CAR) or vertical root fractures (VRF) were imaged by sIOT and standard dental radiography devices. Qualitative assessments were used to compare the conspicuity of these pathologies in the standard radiographs and in a set of multi-view synthetic radiographs generated from the information collected by sIOT. Results: The sIOT-based synthetic 2D radiographs contained less artefact than the image slices in the reconstructed 3D stack, which is the conventional approach to displaying information from a tomosynthesis scan. As a single sIOT scan can be used to generate synthetic radiographs from multiple viewing angles, the interproximal space was less likely to be obscured in the synthetic images compared to the standard radiograph. Additionally, the multi-view synthetic radiographs can potentially improve the display of CAR and VRFs as compared to a single standard radiograph. conclusions: This preliminary experience combining synthetic radiography and sIOT in extracted tooth models is encouraging and supports the ongoing study of this promising approach to 3D intraoral imaging with many potential applications

    In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions

    Get PDF
    Abstract Background Phase-shift nanoemulsions (PSNEs) provide cavitation sites when the perfluorocarbon (PFC) nanodroplets (ND) are vaporized to microbubbles by acoustic energy. Their presence lowers the power required to ablate tissue by high-intensity focused ultrasound (HIFU), potentially making it a safer option for a broader range of treatment sites. However, spatial control over the ablation region can be problematic when cavitation is used to enhance heating. This study explored relationships between vaporization, ablation, and the PSNE concentration in vitro to optimize the acoustic intensity and insonation time required for spatially controlled ablation enhancement using a PSNE that included a volatile PFC component. Methods HIFU (continuous wave at 1 MHz; insonation times of 5, 10, 15, and 20 s; cool-down times of 2, 4, and 6 s; peak negative pressures of 2, 3, and 4 MPa) was applied to albumin-acrylamide gels containing PFC agents (1:1 mix of volatile decafluorobutane and more stable dodecafluoropentane at 105 to 108 PFC ND per milliliter) or agent-free controls. Vaporization fields (microbubble clouds) were imaged by conventional ultrasound, and ablation lesions were measured directly by calipers. Controlled ablation was defined as the production of ‘cigar’-shaped lesions corresponding with the acoustic focal zone. This control was considered to be lost when ablation occurred in prefocal vaporization fields having a predominantly ‘tadpole’ or oblong shape. Results Changes in the vaporization field shape and location occurred on a continuum with increasing PSNE concentration and acoustic intensity. Working with the maximum concentration-intensity combinations resulting in controlled ablation demonstrated a dose-responsive relationship between insonation time and volumes of both the vaporization fields (approximately 20 to 240 mm3) and the ablation lesions (1 to 135 mm3) within them. Conclusions HIFU ablation was enhanced by this PSNE and could be achieved using intensities ≤650 W/cm2. Although the ablation lesions were located within much larger microbubble clouds, optimum insonation times and intensities could be selected to achieve an ablation lesion of desired size and location for a given PSNE concentration. This demonstration of controllable enhancement using a PSNE that contained a volatile PFC component is another step toward developing phase-shift nanotechnology as a potential clinical tool to improve HIFU

    Phantom-based study exploring the effects of different scatter correction approaches on the reconstructed images generated by contrast-enhanced stationary digital breast tomosynthesis

    Get PDF
    Stationary digital breast tomosynthesis (sDBT) is an emerging technology in which the single rotating x-ray tube is replaced by a fixed array of multiple carbon nanotube-enabled sources, providing a higher spatial and temporal resolution. As such, sDBT offers a promising platform for contrast-enhanced (CE) imaging. However, given the minimal enhancement above background with standard operational tube settings and iodine dosing, CE breast imaging requires additional acquisition steps to isolate the iodine signal, using either temporal or dual energy subtraction (TS or DES) protocols. Also, correcting for factors that limit contrast is critical, and scatter and noise pose unique challenges during tomosynthesis. This phantom-based study of CE sDBT compared different postacquisition scatter correction approaches on the quality of the reconstructed image slices. Beam-pass collimation was used to sample scatter indirectly, from which an interpolated scatter map was obtained for each projection image. Scatter-corrected projections provided the information for reconstruction. Comparison between the application of different scatter maps demonstrated the significant effect that processing has on the contrast-to-noise ratio and feature detectability (d′) in the final displayed images and emphasized the critical importance of scatter correction during DES

    Evaluating geographic imputation approaches for zip code level data: an application to a study of pediatric diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in the study of place effects on health, facilitated in part by geographic information systems. Incomplete or missing address information reduces geocoding success. Several geographic imputation methods have been suggested to overcome this limitation. Accuracy evaluation of these methods can be focused at the level of individuals and at higher group-levels (e.g., spatial distribution).</p> <p>Methods</p> <p>We evaluated the accuracy of eight geo-imputation methods for address allocation from ZIP codes to census tracts at the individual and group level. The spatial apportioning approaches underlying the imputation methods included four fixed (deterministic) and four random (stochastic) allocation methods using land area, total population, population under age 20, and race/ethnicity as weighting factors. Data included more than 2,000 geocoded cases of diabetes mellitus among youth aged 0-19 in four U.S. regions. The imputed distribution of cases across tracts was compared to the true distribution using a chi-squared statistic.</p> <p>Results</p> <p>At the individual level, population-weighted (total or under age 20) fixed allocation showed the greatest level of accuracy, with correct census tract assignments averaging 30.01% across all regions, followed by the race/ethnicity-weighted random method (23.83%). The true distribution of cases across census tracts was that 58.2% of tracts exhibited no cases, 26.2% had one case, 9.5% had two cases, and less than 3% had three or more. This distribution was best captured by random allocation methods, with no significant differences (p-value > 0.90). However, significant differences in distributions based on fixed allocation methods were found (p-value < 0.0003).</p> <p>Conclusion</p> <p>Fixed imputation methods seemed to yield greatest accuracy at the individual level, suggesting use for studies on area-level environmental exposures. Fixed methods result in artificial clusters in single census tracts. For studies focusing on spatial distribution of disease, random methods seemed superior, as they most closely replicated the true spatial distribution. When selecting an imputation approach, researchers should consider carefully the study aims.</p
    • …
    corecore